Abstract
Interest in low-temperature operation of solid oxide fuel cells is growing. Recent advances in perovskite phases have resulted in an efficient H + /O 2- /e - triple-conducting electrode BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for low-temperature fuel cells. Here, we further develop BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ for electrolyte applications by taking advantage of its high ionic conduction while suppressing its electronic conduction through constructing a BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO p-n heterostructure. With this approach, it has been demonstrated that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ can be applied in a fuel cell with good electrolyte functionality, achieving attractive ionic conductivity and cell performance. Further investigation confirms the hybrid H + /O 2- conducting capability of BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ -ZnO. An energy band alignment mechanism based on a p-n heterojunction is proposed to explain the suppression of electronic conductivity and promotion of ionic conductivity in the heterostructure. Our findings demonstrate that BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ is not only a good electrode but also a highly promising electrolyte. The approach reveals insight for developing advanced low-temperature solid oxide fuel cell electrolytes.
Cite
CITATION STYLE
Xia, C., Mi, Y., Wang, B., Lin, B., Chen, G., & Zhu, B. (2019). Shaping triple-conducting semiconductor BaCo 0.4 Fe 0.4 Zr 0.1 Y 0.1 O 3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-09532-z
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.