Chemokine receptors are rapidly desensitized and internalized following ligand binding, a process that attenuates receptor-mediated responses. However, the physiological settings in which this process occurs are not clear. Therefore, we examined the fate of CXCR3, a chemokine receptor preferentially expressed on activated T cells following contact with endothelial cells. By immunofluorescence microscopy and flow cytometry, we found that CXCR3 was rapidly internalized when T cells were incubated with IFN-γ-activated human saphenous vein endothelial cells (HSVEC), but not with resting HSVEC. Similar results were obtained using human CXCR3-transfected murine 300-19 B cells. CXCR3 down-regulation was significantly more pronounced when T cells were in contact with HSVEC than with their supernatants, suggesting that CXCR3 ligands were efficiently displayed on the surface of HSVEC. Using neutralizing mAbs to IFN-induced protein-10 (CXCL10), monokine induced by IFN-γ (CXCL9), and IFN-inducible T cell α chemoattractant (I-TAC; CXCL11), we found that even though I-TAC was secreted from IFN-γ-activated HSVEC to lower levels than IFN-induced protein-10 or the monokine induced by IFN-γ, it was the principal chemokine responsible for CXCR3 internalization. This correlated with studies using recombinant chemokines, which revealed that I-TAC was the most potent inducer of CXCR3 down-regulation and of transendothelial migration. Known inhibitors of chemokine-induced chemotaxis, such as pertussis toxin or wortmannin, did not reduce ligand-induced internalization, suggesting that a distinct signal transduction pathway mediates internalization. Our data demonstrate that I-TAC is the physiological inducer of CXCR3 internalization and suggest that chemokine receptor internalization occurs in physiological settings, such as leukocyte contact with an activated endothelium.
CITATION STYLE
Sauty, A., Colvin, R. A., Wagner, L., Rochat, S., Spertini, F., & Luster, A. D. (2001). CXCR3 Internalization Following T Cell-Endothelial Cell Contact: Preferential Role of IFN-Inducible T Cell α Chemoattractant (CXCL11). The Journal of Immunology, 167(12), 7084–7093. https://doi.org/10.4049/jimmunol.167.12.7084
Mendeley helps you to discover research relevant for your work.