Evaluation of the adsorption behavior of mixed perfluoroalkyl and polyfluoroalkyl substances onto granular activated carbon and styrene-divinylbenzene resins

0Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Because of the remarkable chemical structure of perfluoroalkyl and polyfluoroalkyl substances (PFAS), as well as the complex conditions of water, selecting an appropriate adsorbent for treating PFAS is critical. Adsorption needs to be environmentally friendly, low cost, and consider the types of adsorbents that work well in mixed PFAS solutions. In the present study, we used mixed PFAS to estimate the PFAS activity. This research aimed to evaluate and compare the efficacy of the adsorption of PFAS from water using different adsorbents: granular activated carbon (GAC), IRA 910 (strong anion resin), and DOWEX MB-50 (mixed exchange resin). Batch adsorption isotherms and kinetic studies were performed for perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS). Freundlich models consistently described the kinetic behavior with a high correlation coefficient (R2 > 0.98). PFAS adsorption capacities on GAC and IRA910 were dependent on the chain length (PFOS > PFOA > PFHxS). The adsorption capacity of DOWEX MB-50 decreased because of the sulfonate effects (PFOS > PFHxS > PFOA). The rate constants (k2) that represented the adsorption of PFAS on different adsorbents observed within 96 h were accurately determined by the pseudo-second-order (PSO) model. GAC achieved followed the relationship k2(PFOS) > k2(PFOA) > k2(PFHxS). Furthermore, k2 of IRA910 decreased in the order of k2(PFOA) > k2(PFOS) > k2(PFHxS), implying that IRA910 promoted hydrophobicity more significantly on the adsorption of PFCAs than perfluoroalkane (-alkyl) sulfonic acids. The kinetics of DOWEX MB-50 revealed k2(PFHxS) > k2(PFOS) > k2(PFOA) because gel-type resins like DOWEX MB-50 are more suitable for shorter-chain PFAS. Further investigation is needed to determine the effect of organic matter under natural conditions and evaluate adsorptive selection caused by operational complexities.

Cite

CITATION STYLE

APA

Sukeesan, S., Boontanon, N., Fujii, S., & Boontanon, S. K. (2023). Evaluation of the adsorption behavior of mixed perfluoroalkyl and polyfluoroalkyl substances onto granular activated carbon and styrene-divinylbenzene resins. Remediation, 33(4), 297–308. https://doi.org/10.1002/rem.21766

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free