Naive Bayes approach to predict the winner of an ODI cricket game

  • Wickramasinghe I
N/ACitations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

This paper presents findings of a study to predict the winners of an One Day International (ODI) cricket game, after the completion of the first inning of the game. We use Naive Bayes (NB) approach to make this prediction using the data collected with 15 features, comprised of variables related to batting, bowling, team composition, and other. Upon the construction of an initial model, our objective is to improve the accuracy of predicting the winner using some feature selection algorithms, namely univariate, recursive elimination, and principle component analysis (PCA). Furthermore, we examine the contribution of the appropriate ratios of training sample size to testing sample size on the accuracy of prediction. According to the experimental findings, the accuracy of winner-prediction can be improved with the use of feature selection algorithm. Moreover, the accuracy of winner prediction becomes the highest (85.71%) with the univariate feature selection method, compared to its counterparts. By selecting the appropriate ratio of the sample sizes of training sample to testing sample, the prediction accuracy can be further increased.

Cite

CITATION STYLE

APA

Wickramasinghe, I. (2020). Naive Bayes approach to predict the winner of an ODI cricket game. Journal of Sports Analytics, 6(2), 75–84. https://doi.org/10.3233/jsa-200436

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free