Synaptotagmin 7 functions as a Ca2+-sensor for synaptic vesicle replenishment

  • Liu H
  • Bai H
  • Hui E
  • et al.
N/ACitations
Citations of this article
127Readers
Mendeley users who have this article in their library.

Abstract

Synaptotagmin (syt) 7 is one of three syt isoforms found in all metazoans; it is ubiquitously expressed, yet its function in neurons remains obscure. Here, we resolved Ca2+-dependent and Ca2+-independent synaptic vesicle (SV) replenishment pathways, and found that syt 7 plays a selective and critical role in the Ca2+-dependent pathway. Mutations that disrupt Ca2+-binding to syt 7 abolish this function, suggesting that syt 7 functions as a Ca2+-sensor for replenishment. The Ca2+-binding protein calmodulin (CaM) has also been implicated in SV replenishment, and we found that loss of syt 7 was phenocopied by a CaM antagonist. Moreover, we discovered that syt 7 binds to CaM in a highly specific and Ca2+-dependent manner; this interaction requires intact Ca2+-binding sites within syt 7. Together, these data indicate that a complex of two conserved Ca2+-binding proteins, syt 7 and CaM, serve as a key regulator of SV replenishment in presynaptic nerve terminals.Neurons communicate with one another at junctions called synapses. The arrival of an electrical signal called an action potential at the first neuron triggers the release of chemicals called neurotransmitters into the synapse. These chemicals then diffuse across the gap between the neurons and bind to receptors on the second cell.The neurotransmitter molecules are stored in the first cell in packages known as vesicles, which release their contents by fusing with the cell membrane. Following a fusion event, neurons must replenish their vesicle stocks to ensure that they are ready for the arrival of the next action potential. This replenishment process is known to involve a calcium-dependent pathway and a calcium-independent pathway.A protein called calmodulin, that binds calcium ions, has an important role in the first of these pathways. Now, Liu et al. have shown that another protein, synaptotagmin 7, also has a key role in the replenishment of synaptic vesicles, possibly as a sensor for calcium ions. Moreover, Liu et al. found that synaptotagmin 7 and calmodulin bind to each other to form a complex, which suggests that the calcium-dependent replenishment pathway is regulated by this complex.The synaptotagmins are a family of 17 proteins, three of which are present in all animals. Two of these were known to have roles in synapses, but the role of the third—synaptotagmin 7—had been unclear. In addition to providing a more complete understanding of the replenishment of synaptic vesicles, the work of Liu et al. also supplies the final piece of the jigsaw regarding the role of the synaptotagmins that are present in all animals.

Cite

CITATION STYLE

APA

Liu, H., Bai, H., Hui, E., Yang, L., Evans, C. S., Wang, Z., … Chapman, E. R. (2014). Synaptotagmin 7 functions as a Ca2+-sensor for synaptic vesicle replenishment. ELife, 3. https://doi.org/10.7554/elife.01524

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free