Abstract
The growth-associated protein, GAP-43 (also known as F1, neuromodulin, B-50), participates in the developmental regulation of axonal growth and neural network formation via protein kinase C-mediated regulation of cytoskeletal elements. Transgenic overexpression of GAP-43 can result in the formation of new synapses, neurite outgrowth, and synaptogenesis after injury. In a number of adult mammalian species, GAP-43 has been implicated in the regulation of synaptic transmission and plasticity, such as long-term potentiation, drug sensitization, and changes in memory processes. This review examines the molecular and biochemical attributes of GAP-43, its distribution in the central nervous system, subcellular localization, role in neurite outgrowth and development, and functions related to plasticity, such as those occurring during long-term potentiation, memory formation, and drug sensitization.
Cite
CITATION STYLE
Holahan, M. (2015). GAP-43 in synaptic plasticity: molecular perspectives. Research and Reports in Biochemistry, 137. https://doi.org/10.2147/rrbc.s73846
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.