Modeling and Analysis of Acoustic Emission Generated by Fatigue Cracking

20Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The acoustic emission (AE) method is a popular and well-developed method for passive structural health monitoring of metallic and composite structures. The current study focuses on the analysis of one of its processes, sound source or signal propagation. This paper discusses the principle of plate wave signal sensing using piezoelectric transducers, and derives an analytical expression for the response of piezoelectric transducers under the action of stress waves, to obtain an over-all mathematical model of the acoustic emission signal from generation to reception. The acoustic emission caused by fatigue crack extension is simulated by a finite element method, and the actual acoustic emission signal is simulated by a pencil lead break experiment. The results predicted by the mathematical model are compared with the experimental results and the simulation results, respectively, and show good agreement. In addition, the presence of obvious S0 mode Lamb waves is observed in the simulation results and experimental results, which further verifies the correctness of the analytical model prediction.

Cite

CITATION STYLE

APA

Mu, W., Gao, Y., Wang, Y., Liu, G., & Hu, H. (2022). Modeling and Analysis of Acoustic Emission Generated by Fatigue Cracking. Sensors, 22(3). https://doi.org/10.3390/s22031208

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free