Abstract
Ca,Mg-sulfates are subduction-related sources of oxidized S-rich fluid under lithospheric mantle P,T-parameters. Experimental study, aimed at the modeling of scenarios of S-rich fluid generation as a result of desulfation and subsequent sulfide formation, was performed using a multi-anvil high-pressure apparatus. Experiments were carried out in the Fe,Ni-olivine–anhydrite–C and Fe,Ni-olivine–Mg-sulfate–C systems (P = 6.3 GPa, T of 1050 and 1450◦C, t = 23–60 h). At 1050◦C, the interaction in the olivine–anhydrite–C system leads to the formation of olivine + diopside + pyrrhotite assemblage and at 1450◦C leads to the generation of immiscible silicate-oxide and sulfide melts. Desulfation of this system results in the formation of S-rich reduced fluid via the reaction olivine + anhydrite + C → diopside + S0 + CO2. This fluid is found to be a medium for the recrystallization of olivine, extraction of Fe and Ni, and subsequent crystallization of Fe,Ni-sulfides (i.e., olivine sulfidation). At 1450◦C in the Ca-free system, the generation of carbonate-silicate and Fe,Ni-sulfide melts occurs. Formation of the carbonate component of the melt occurs via the reaction Mg-sulfate + C → magnesite + S0. It is experimentally shown that the olivine-sulfate interaction can result in mantle sulfide formation and generation of potential mantle metasomatic agents—S-and CO2-dominated fluids, silicate-oxide melt, or carbonate-silicate melt.
Author supplied keywords
Cite
CITATION STYLE
Bataleva, Y., Palyanov, Y., & Borzdov, Y. (2018). Sulfide formation as a result of sulfate subduction into silicate mantle (Experimental modeling under high p,t-parameters). Minerals, 8(9). https://doi.org/10.3390/min8090373
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.