Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe2

76Citations
Citations of this article
114Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The two-dimensional topological insulators host a full gap in the bulk band, induced by spin–orbit coupling (SOC) effect, together with the topologically protected gapless edge states. However, it is usually challenging to suppress the bulk conductance and thus to realize the quantum spin Hall (QSH) effect. In this study, we find a mechanism to effectively suppress the bulk conductance. By using the quasiparticle interference technique with scanning tunneling spectroscopy, we demonstrate that the QSH candidate single-layer 1T’-WTe2 has a semimetal bulk band structure with no full SOC-induced gap. Surprisingly, in this two-dimensional system, we find the electron–electron interactions open a Coulomb gap which is always pinned at the Fermi energy (EF). The opening of the Coulomb gap can efficiently diminish the bulk state at the EF and supports the observation of the quantized conduction of topological edge states.

Cite

CITATION STYLE

APA

Song, Y. H., Jia, Z. Y., Zhang, D., Zhu, X. Y., Shi, Z. Q., Wang, H., … Li, S. C. (2018). Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe2. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-06635-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free