Analyzing Generalization of Vision and Language Navigation to Unseen Outdoor Areas

20Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

Vision and language navigation (VLN) is a challenging visually-grounded language understanding task. Given a natural language navigation instruction, a visual agent interacts with a graph-based environment equipped with panorama images and tries to follow the described route. Most prior work has been conducted in indoor scenarios where best results were obtained for navigation on routes that are similar to the training routes, with sharp drops in performance when testing on unseen environments. We focus on VLN in outdoor scenarios and find that in contrast to indoor VLN, most of the gain in outdoor VLN on unseen data is due to features like junction type embedding or heading delta that are specific to the respective environment graph, while image information plays a very minor role in generalizing VLN to unseen outdoor areas. These findings show a bias to specifics of graph representations of urban environments, demanding that VLN tasks grow in scale and diversity of geographical environments.

Cite

CITATION STYLE

APA

Schumann, R., & Riezler, S. (2022). Analyzing Generalization of Vision and Language Navigation to Unseen Outdoor Areas. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (Vol. 1, pp. 7519–7532). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2022.acl-long.518

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free