Effects of graphene nanoplates on the mechanical behavior and strengthening mechanism of 7075al alloy

14Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

7075Al alloy is the preferred material for lightweight automotive applications, but the existing problem is that it is difficult to combine high strength and high toughness. This paper presents our research aimed at obtaining high strength and high toughness materials by adding a nano-phase to realize microstructure refinement. Graphene nanoplates (GNP)/7075Al composites and 7075Al alloy were prepared by a stirring casting method in the present study. In comparison to 7075Al, the tensile strength of GNP/7075Al composites was increased from 572 MPa to 632 MPa while maintaining good uniform elongation of 8% to 10%. The increased strength behavior of GNP/7075Al composites while maintaining the plasticity is discussed in terms of grain refinement and dislocation evolution by analyzing the composite microstructure and quantitatively analyzing the contributions of grain boundary strengthening, solid solution strengthening, precipitation strengthening and dislocation strengthening. GNP’s strengthening of GNP/7075Al composites is mainly attributed to the refinement of grain size and the increase of dislocation density.

Cite

CITATION STYLE

APA

Leng, J., Dong, Y., Ren, B., Wang, R., & Teng, X. (2020). Effects of graphene nanoplates on the mechanical behavior and strengthening mechanism of 7075al alloy. Materials, 13(24), 1–13. https://doi.org/10.3390/ma13245808

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free