Plastidial α-glucan phosphorylase 1 complexes with disproportionating enzyme 1 in Ipomoea batatas storage roots for elevating malto-oligosaccharide metabolism

  • Lin Y
  • Chang S
  • Juang R
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

It has been proposed that malto-oligosaccharides (MOSs) are possibly recycled back into amylopectin biosynthesis via the sequential reactions catalyzed by plastidial α-glucan phosphorylase 1 (Pho1) and disproportionating enzyme 1 (Dpe1). In the present study, the reciprocal co-immunoprecipitation experiments using specific antibodies against Pho1 and Dpe1 demonstrated that these two enzymes can form a complex (the PD complex) in Ipomoea batatas storage roots. The immunohistochemistry analyses also revealed the co-localization of Pho1 and Dpe1 in the amyloplasts, and the protein levels of Pho1 and Dpe1 increased gradually throughout sweet potato storage root development. A high molecular weight PD complex was co-purified from sweet potato storage root lysates by size exclusion chromatography. Enzyme kinetic analyses showed that the PD complex can catalyze maltotriose and maltotetraose to generate glucose-1-phosphate in the presence of inorganic phosphate, and it also performs greater Dpe1 activity toward MOSs than does free form Dpe1. These data suggest that Pho1 and Dpe1 may form a metabolon complex, which provides elevated metabolic fluxes for MOS metabolism via a direct transfer of sugar intermediates, resulting in recycling of glucosyl units back into amylopectin biosynthesis more efficiently.

Cite

CITATION STYLE

APA

Lin, Y.-C., Chang, S.-C., & Juang, R.-H. (2017). Plastidial α-glucan phosphorylase 1 complexes with disproportionating enzyme 1 in Ipomoea batatas storage roots for elevating malto-oligosaccharide metabolism. PLOS ONE, 12(5), e0177115. https://doi.org/10.1371/journal.pone.0177115

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free