Abstract
Background: The repair of critical-sized bone defect represents a challenging problem in bone tissue engineering. To address the most important problem in bone defect repair, namely insufficient blood supply, this study aimed to find a method that can promote the formation of vascularized bone tissue. Method: The phenotypes of ASCs and EPCs were identified respectively, and ASCs/EPCs were co-cultured in vitro to detect the expression of osteogenic and angiogenic genes. Furthermore, the co-culture system combined with scaffold material was used to repair the critical-sized bone defects of the cranial bone in rats. Results: The co-culture of ASCs/EPCs could increase osteogenesis and angiogenesis-related gene expression in vitro. The results of in vivo animal experiments demonstrated that the ASC/EPC group could promote bone regeneration and vascularization in the meantime and then significantly accelerate the repair of critical-sized bone defects. Conclusion: It is feasible to replace traditional single seed cells with ASC/EPC co-culture system for vascularized bone regeneration. This system could ultimately enable clinicians to better repair the defect of craniofacial bone and avoid donor site morbidity.
Author supplied keywords
Cite
CITATION STYLE
He, Y., Lin, S., Ao, Q., & He, X. (2020). The co-culture of ASCs and EPCs promotes vascularized bone regeneration in critical-sized bone defects of cranial bone in rats. Stem Cell Research and Therapy, 11(1). https://doi.org/10.1186/s13287-020-01858-6
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.