Remarkably enhanced dielectric stability and energy storage properties in BNT—BST relaxor ceramics by A-site defect engineering for pulsed power applications

120Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

Lead-free bulk ceramics for advanced pulsed power capacitors show relatively low recoverable energy storage density (Wrec) especially at low electric field condition. To address this challenge, we propose an A-site defect engineering to optimize the electric polarization behavior by disrupting the orderly arrangement of A-site ions, in which Ba 0.105Na 0.325Sr 0.245−1.5x□ 0.5xBi 0.325+xTiO 3 (BNS 0.245−1.5x□ 0.5xB 0.325+xT , x = 0, 0.02, 0.04, 0.06, and 0.08) lead-free ceramics are selected as the representative. The BNS 0.245−1.5x□ 0.5xB 0.325+xT ceramics are prepared by using pressureless solid-state sintering and achieve large Wrec (1.8 J/cm3) at a low electric field (@110 kV/cm) when x = 0.06. The value of 1.8 J/cm3 is super high as compared to all other Wrec in lead-free bulk ceramics under a relatively low electric field (< 160 kV/cm). Furthermore, a high dielectric constant of 2930 within 15% fluctuation in a wide temperature range of 40–350 °C is also obtained in BNS 0.245−1.5x□ 0.5xB 0.325+xT (x = 0.06) ceramics. The excellent performances can be attributed to the A-site defect engineering, which can reduce remnant polarization (Pr) and improve the thermal evolution of polar nanoregions (PNRs). This work confirms that the BNS 0.245−1.5x□ 0.5xB 0.325+xT (x = 0.06) ceramics are desirable for advanced pulsed power capacitors, and will push the development of a series of Bi0.5Na0.5TiO3 (BNT)-based ceramics with high Wrec and high-temperature stability.

Cite

CITATION STYLE

APA

Li, Z., Li, D. X., Shen, Z. Y., Zeng, X., Song, F., Luo, W., … Li, Y. (2022). Remarkably enhanced dielectric stability and energy storage properties in BNT—BST relaxor ceramics by A-site defect engineering for pulsed power applications. Journal of Advanced Ceramics, 11(2), 283–294. https://doi.org/10.1007/s40145-021-0532-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free