The smoothing method is classified into two, namely the average smoothing method and the exponential smoothing method. This study examines the application of the double moving average (DMA) and double exponential smoothing (DES) methods in forecasting a data. This study uses 72 data, namely consumer goods import value data for the period January 2017 to December 2022. The method with the lowest MSE and MAPE values is used to predict the import value of consumer goods. The results obtained show that the brown double exponential smoothing method with parameter α, which is 0.1, is the best method for predicting the import value of consumer goods in 2017-2022 with an MSE value of 60374.46 and a MAPE value of 13.66%.
CITATION STYLE
Widarti, W., Darina, N., Chasanah, S. L., & Setiawan, E. (2024). A Penerapan Metode Double Moving Average dan Double Exponential Smoothing pada Peramalan Nilai Impor Barang Konsumsi Tahun 2017-2022. MATHunesa: Jurnal Ilmiah Matematika, 12(1), 30–37. https://doi.org/10.26740/mathunesa.v12n1.p30-37
Mendeley helps you to discover research relevant for your work.