Lorentz-violating type-II Dirac fermion, as a new type of quasiparticles beyond the high-energy physics, has received intense attention recently. However, excellent candidate materials which contain sufficiently more type-II Dirac points near the Fermi level are still in scarcity. Here, we report a family of existing full-Heusler compounds, namely XMg2Ag (X = Pr, Nd, Sm), can serve as excellent Lorentz-violating type-II Dirac semimetals. We find they show several symmetry-protected nodal loops and triply degenerate nodal points (TDNPs) when spin-orbit coupling (SOC) is not considered. These fermions show clear nontrivial surface states. When SOC is included, the TDNPs transform into type-II Dirac points, characterized by Fermi arc surface states. The type-II DPs are protected by the C 4v symmetry in the Γ-X path. Comparing with other type-II Dirac semimetals, XMg2Ag compounds have additional advantages including: (i) they contain as much as three pairs of type-II Dirac points; (ii) all the Dirac points locate very close to the Fermi level. These advantages make XMg2Ag compounds are suitable for studying the novel properties of type-II Dirac fermions in future experiments.
CITATION STYLE
Meng, W., Zhang, X., Liu, Y., Dai, X., & Liu, G. (2020). Lorentz-violating type-II Dirac fermions in full-Heusler compounds XMg2Ag (X = Pr, Nd, Sm). New Journal of Physics, 22(7). https://doi.org/10.1088/1367-2630/ab9d55
Mendeley helps you to discover research relevant for your work.