Abstract
Non-pneumatic tires (NPTs) have been widely used for their advantages of no run-flat, no need for air maintenance, and unique stiffness characteristics. This study focuses on the design of a spoke of a Fibonacci spiral non-pneumatic tire (FS-NPT) based on its properties of three-dimensional stiffness. Finite element (FE) models, parametric studies, designs of experiments (DOEs), and sensitivity analyses are conducted to study the effect on the three-dimensional stiffness considering three design variables: (a) the thickness of the spokes, (b) the radius of the first Fibonacci spiral of the spoke, and (c) the width of the spokes of the FS-NPT. The results show that variation in all three design parameters had no considerable effect on the lateral stiffness. The results from the DOE are used to create a response surface model (RSM) for the multi-objective function (minimal SSD) and a constraint on the weight of the FS-NPT. The analytical RSM functions are optimized for minimizing the SSD subjected to the given constraint. The results indicate that all three design variables of the spoke had a significant effect on the vertical stiffness. The spoke radius had no potential effect on the longitudinal stiffness of the NPT. Hence, the three-dimensional stiffness of the FS-NPT has a certain independent design. This work demonstrates the advantages of non-pneumatic tires, especially FS-NPTs, in three-dimensional stiffness decoupling. This study guides the industrial production of flexible-spoke bionic NPTs by providing a very simple spoke structure. The optimization results show that FS-NPTs have a large stiffness design range. The different stiffness targets can be achieved by adjusting different combinations of the design variables, and the tire mass does not increase significantly.
Author supplied keywords
Cite
CITATION STYLE
Liu, X., Xu, T., Zhu, L., & Gao, F. (2022). Multi-Objective Optimization of the Geometry of a Non-Pneumatic Tire for Three-Dimensional Stiffness Adaptation. Machines, 10(12). https://doi.org/10.3390/machines10121183
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.