Endocytosis-independent function of clathrin heavy chain in the control of basal NF-κB activation

13Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Background: Nuclear factor-κB (NF-κB) is a transcription factor that regulates the transcription of genes involved in a variety of biological processes, including innate and adaptive immunity, stress responses and cell proliferation. Constitutive or excessive NF-κB activity has been associated with inflammatory disorders and higher risk of cancer. In contrast to the mechanisms controlling inducible activation, the regulation of basal NF-κB activation is not well understood. Here we test whether clathrin heavy chain (CHC) contributes to the regulation of basal NF-κB activity in epithelial cells. Methodology: Using RNA interference to reduce endogenous CHC expression, we found that CHC is required to prevent constitutive activation of NF-κB and gene expression. Immunofluorescence staining showed constitutive nuclear localization of the NF-κB subunit p65 in absence of stimulation after CHC knockdown. Elevated basal p65 nuclear localization is caused by constitutive phosphorylation and degradation of inhibitor of NF-κB alpha (IκBα) through an IκB kinase α (IKKα)-dependent mechanism. The role of CHC in NF-κB signaling is functionally relevant as constitutive expression of the proinflammatory chemokine interleukin-8 (IL-8), whose expression is regulated by NF-κB, was found after CHC knockdown. Disruption of clathrin-mediated endocytosis by chemical inhibition or depletion of the μ2-subunit of the endocytosis adaptor protein AP-2, and knockdown of clathrin light chain a (CHLa), failed to induce constitutive NF-κB activation and IL-8 expression, showing that CHC acts on NF-κB independently of endocytosis and CLCa. Conclusions: We conclude that CHC functions as a built-in molecular brake that ensures a tight control of basal NF-κB activation and gene expression in unstimulated cells. Furthermore, our data suggest a potential link between a defect in CHC expression and chronic inflammation disorder and cancer. © 2011 Kim, et al.

Cite

CITATION STYLE

APA

Kim, M. L., Sorg, I., & Arrieumerlou, C. (2011). Endocytosis-independent function of clathrin heavy chain in the control of basal NF-κB activation. PLoS ONE, 6(2). https://doi.org/10.1371/journal.pone.0017158

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free