Experimental analysis on the impact force of viscous debris flow

201Citations
Citations of this article
128Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A miniaturized flume experiment was carried out to measure impact forces of viscous debris flow. The flow depth (7.2-11.2 cm), velocity (2.4-5.2 m/s) and impact force were recorded during the experiment. The impact process of debris flow can be divided into three phases by analyzing the variation of impact signals and flow regime. The three phases are the sudden strong impact of the debris flow head, continuous dynamic pressure of the body and slight static pressure of the tail. The variation of impact process is consistent with the change in the flow regime. The head has strong-rapid impact pressure, which is shown as a turbulent-type flow; the body approximates to steady laminar flow. Accordingly, the process of debris flows hitting structures was simplified to a triangle shape, ignoring the pressure of the tail. In order to study the distribution of the debris flow impact force at different depths and variation of the impact process over time, the impact signals of slurry and coarse particles were separated from the original signals using wavelet analysis. The slurry's dynamic pressure signal appears to be a smooth curve, and the peak pressure is 12-34 kPa when the debris flow head hits the sensors, which is about 1.54 ± 0.36 times the continuous dynamic pressure of the debris flow body. The limit of application of the empirical parameter α in the hydraulic formula was also noted. We introduced the power function relationship of α and the Froude number of debris flows, and proposed a universal model for calculating dynamic pressure. The impact pressure of large particles has the characteristic of randomness. The mean frequency of large particles impacting the sensor is 210 ± 50-287 ± 29 times per second, and it is 336 ± 114-490 ± 69 times per second for the debris flow head, which is greater than that in the debris flow body. Peak impact pressure of particles at different flow depths is 40-160 kPa, which is 3.2 ± 1.5 times the impact pressure of the slurry at the bottom of the flow, 3.1 ± 0.9 times the flow in the middle, and 3.3 ± 0.9 times the flow at the surface. The differences in impact frequency indicate that most of the large particles concentrate in the debris flow head, and the number of particles in the debris flow head increases with height. This research supports the study of solid-liquid two phase flow mechanisms, and helps engineering design and risk assessment in debris flow prone areas.

Cite

CITATION STYLE

APA

Cui, P., Zeng, C., & Lei, Y. (2015). Experimental analysis on the impact force of viscous debris flow. Earth Surface Processes and Landforms, 40(12), 1644–1655. https://doi.org/10.1002/esp.3744

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free