Corn stover is an abundant and underused source of lignocellulose waste biomass that can be transformed into a high-quality energy resource using hydrothermal carbonization (HTC). This investigation has focused on the effect of processing parameters on the products of HTC-namely solid fuel or hydrochar and liquid and gas fractions. HTC was conducted in a temperaturecontrolled small batch reactor with corn stover and deionized water under oxygen-free conditions obtained by pressurizing the reactor headspace with nitrogen gas. The properties of the hydrochar and liquid and gas fractions were evaluated as a function of the process temperature (250-350 °C), residence time (30-60 min) and biomass/water ratio (0.09-0.14). Central composite design modules in a response surface methodology were used to optimize processing parameters. The maximum mass yield, energy yield and high heating value (HHV) of the hydrochar produced were 29.91% dry weight (dw), 42.38% dw and 26.03 MJ/kg, respectively. Concentrations of acetic acid and hydrogen gas were 6.93 g/L and 0.25 v/v%, respectively. Experimental results after process optimization were in satisfactory agreement with the predicted HHV. The optimal HTC process parameters were determined to be 305 °C with a 60 min residence time and a biomass/water ratio of 0.114, yielding hydrochar with a HHV of 25.42 MJ/kg. The results confirm the feasibility of an alternative corn stover management system.
CITATION STYLE
Mohammed, I. S., Na, R., Kushima, K., & Shimizu, N. (2020). Investigating the effect of processing parameters on the products of hydrothermal carbonization of corn stover. Sustainability (Switzerland), 12(12). https://doi.org/10.3390/su12125100
Mendeley helps you to discover research relevant for your work.