Gap statistics for whole genome shotgun DNA sequencing projects

11Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Motivation: Investigators utilize gap estimates for DNA sequencing projects. Standard theories assume sequences are independently and identically distributed, leading to appreciable under-prediction of gaps. Results: Using a statistical scaling factor and data from 20 representative whole genome shotgun projects, we construct regression equations that relate coverage to a normalized gap measure. Prokaryotic genomes do not correlate to sequence coverage, while eukaryotes show strong correlation if the chaff is ignored. Gaps decrease at an exponential rate of only about one-third of that predicted via theory alone. Case studies suggest that departure from theory can largely be attributed to assembly difficulties for repeat-rich genomes, but bias and coverage anomalies are also important when repeats are sparse. Such factors cannot be readily characterized a priori, suggesting upper limits on the accuracy of gap prediction. We also find that diminishing coverage probability discussed in other studies is a theoretical artifact that does not arise for the typical project. © Oxford University Press 2004; all rights reserved.

Cite

CITATION STYLE

APA

Wendl, M. C., & Yang, S. P. (2004). Gap statistics for whole genome shotgun DNA sequencing projects. Bioinformatics, 20(10), 1527–1534. https://doi.org/10.1093/bioinformatics/bth120

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free