Wearable Technology Insights: Unveiling Physiological Responses During Three Different Socially Anxious Activities

  • Sahu N
  • Gupta S
  • Lone H
N/ACitations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Wearable technology holds promise for monitoring and managing Social Anxiety Disorder (SAD), yet the absence of clear biomarkers specific to SAD hampers its effectiveness. This article explores this issue by presenting a study investigating variances in heart rate, heart rate variability, and skin conductance between socially anxious and non-anxious individuals. One hundred eleven non-clinical student participants participated in groups of three in three anxiety-provoking activities (i.e., speech, group discussion, and interview) in a controlled lab-based study. During the study, electrocardiogram (ECG) and electrodermal activity (EDA) signals were captured via on-body electrodes. During data analysis, participants were divided into four groups based on their self-reported anxiety level (“none,” “mild,” “moderate,” and “severe”). Between-group analysis shows that discriminating ECG features (i.e., heart rate and MeanNN) could identify anxious individuals during anxiety-provoking activities, while EDA could not. Moreover, the discriminating ECG features improved the classification accuracy of anxious and non-anxious individuals in different machine-learning techniques. The findings need to be further scrutinized in real-world settings for the generalizability of the results.

Cite

CITATION STYLE

APA

Sahu, N. K., Gupta, S., & Lone, H. (2024). Wearable Technology Insights: Unveiling Physiological Responses During Three Different Socially Anxious Activities. ACM Journal on Computing and Sustainable Societies, 2(2), 1–23. https://doi.org/10.1145/3663671

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free