Abstract
Structural equation model (SEM) trees are data-driven tools for finding variables that predict group differences in SEM parameters. SEM trees build upon the decision tree paradigm by growing tree structures that divide a data set recursively into homogeneous subsets. In past research, SEM trees have been estimated predominantly with the R package semtree. The original algorithm in the semtree package selects split variables among covariates by calculating a likelihood ratio for each possible split of each covariate. Obtaining these likelihood ratios is computationally demanding. As a remedy, we propose to guide the construction of SEM trees by a family of score-based tests that have recently been popularized in psychometrics (Merkle and Zeileis, 2013; Merkle et al., 2014). These score-based tests monitor fluctuations in case-wise derivatives of the likelihood function to detect parameter differences between groups. Compared to the likelihood-ratio approach, score-based tests are computationally efficient because they do not require refitting the model for every possible split. In this paper, we introduce score-guided SEM trees, implement them in semtree, and evaluate their performance by means of a Monte Carlo simulation.
Author supplied keywords
Cite
CITATION STYLE
Arnold, M., Voelkle, M. C., & Brandmaier, A. M. (2021). Score-Guided Structural Equation Model Trees. Frontiers in Psychology, 11. https://doi.org/10.3389/fpsyg.2020.564403
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.