Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry

45Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The main aims and contributions of the present paper are to use new soft computing methods for the simulation of scour geometry (depth/height and locations) in a comparative framework. Five models were used for the prediction of the dimension and location of the scour pit. The five developed models in this study are multilayer perceptron (MLP) neural network, radial basis functions (RBF) neural network, adaptive neuro fuzzy inference systems (ANFIS), multiple linear regression (MLR), and multiple non-linear regression (MNLR) in comparison with empirical equations. Four non-dimensional geometry parameters of scour hole shape are predicted by these models including the maximum scour depth (S), the distance of S from the weir (XS), the maximum height of downstream deposited sediments (hd), and distance of hd from the weir (XD). The best results over train data derived for XS/Z and hd/Z by the MLP model with R2 are 0.95 and 0.96 respectively; the best predictions for S/Z and XD/Z are from the ANFIS model with R2 0.91 and 0.96 respectively. The results indicate that the application of MLP and ANFIS results in the accurate prediction of scour geometry for the designing of stable grade control structures in alluvial irrigation channels.

Cite

CITATION STYLE

APA

Riahi-Madvar, H., Dehghani, M., Seifi, A., Salwana, E., Shamshirband, S., Mosavi, A., & Chau, K. wing. (2019). Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Engineering Applications of Computational Fluid Mechanics, 13(1), 529–550. https://doi.org/10.1080/19942060.2019.1618396

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free