High Accuracy Time of Flight Measurement Using Digital Signal Processing Techniques for Subsea Applications

  • Ashraf M
  • Qayyum H
N/ACitations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

The techniques widely used in ultrasonic measurements are based on the determination of the time of flight (T.o.F). A short train of waves is transmitted and same transducer is used for reception of the reflected signal for the pulse-echo measurement applications. The amplitude of the received waveform is an envelope which starts from zero reaches to a peak and then dies out. The echoes are mostly detected by simple threshold crossing technique, which is also cause of error. In this paper digital signal processing is used to calculate the time delay in reception i.e. T.o.F, for which a maximum similarity between the reference and the delayed echo signals is obtained. To observe the effect of phase un-certainties and frequency shifts (Doppler), this processing is carried out, both directly on the actual wave shape and after extracting the envelopes of the reference and delayed echo signals. Several digital signal processing algorithms are considered and the effects of different factors such as sampling rate, resolution of digitization and S/N ratio are analyzed. Result show accuracy, computing time and cost for different techniques.

Cite

CITATION STYLE

APA

Ashraf, M., & Qayyum, H. (2011). High Accuracy Time of Flight Measurement Using Digital Signal Processing Techniques for Subsea Applications. Journal of Signal and Information Processing, 02(04), 330–335. https://doi.org/10.4236/jsip.2011.24047

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free