Parcellation of human and monkey core auditory cortex with fmri pattern classification and objective detection of tonotopic gradient reversals

28Citations
Citations of this article
93Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Auditory cortex (AC) contains several primary-like, or "core," fields, which receive thalamic input and project to non-primary "belt" fields. In humans, the organization and layout of core and belt auditory fields are still poorly understood, and most auditory neuroimaging studies rely on macroanatomical criteria, rather than functional localization of distinct fields. A myeloarchitectonic method has been suggested recently for distinguishing between core and belt fields in humans (Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. 2012. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J Neurosci. 32:16095-16105). We propose a marker for core AC based directly on functional magnetic resonance imaging (fMRI) data and pattern classification. We show that a portion of AC in Heschl's gyrus classifies sound frequency more accurately than other regions in AC. Using fMRI data from macaques, we validate that the region where frequency classification performance is significantly above chance overlaps core auditory fields, predominantly A1. Within this region, we measure tonotopic gradients and estimate the locations of the human homologues of the core auditory subfields A1 and R. Our results provide a functional rather than anatomical localizer for core AC. We posit that inter-individual variability in the layout of core AC might explain disagreements between results from previous neuroimaging and cytological studies.

Author supplied keywords

Cite

CITATION STYLE

APA

Schönwiesner, M., Dechent, P., Voit, D., Petkov, C. I., & Krumbholz, K. (2015). Parcellation of human and monkey core auditory cortex with fmri pattern classification and objective detection of tonotopic gradient reversals. Cerebral Cortex, 25(10), 3278–3289. https://doi.org/10.1093/cercor/bhu124

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free