The objective of this work is to determine the microstructural characteristics of investment cast cobalt alloy as the cross-sectional area is varied, thus changing the local effective cooling rates and solidification times. The extent of published work on the as-cast properties of cobalt alloys is minimal. The primary aim of this work is therefore to extend knowledge of the behaviour of such alloys as they solidify, which will influence the design of new products as well as the industrial optimisation of the casting process. Wedge-shaped parts were cast from a biomedical grade cobalt alloy employing the method of lost wax investment casting. Analytical techniques such as optical microscopy, image analysis and microhardness testing were used to characterise the as-cast parts. Parameters studied include variations in grain structure, nature of the columnar and equiaxed zones and the spread of porosity (both shrinkage and gas). Changes in microstructure were compared to microhardness values obtained. The solidification profile of the alloy through the prototype cast component was investigated based on measurement of the dendrite arm spacings. A discussion on the physical phenomena controlling the microstructural variations is presented.
CITATION STYLE
Kaiser, R., Browne, D. J., & Williamson, K. (2011). Investigation of the effects of cooling rate on the microstructure of investment cast biomedical grade Co alloys. In IOP Conference Series: Materials Science and Engineering (Vol. 27). https://doi.org/10.1088/1757-899X/27/1/012071
Mendeley helps you to discover research relevant for your work.