Nausea-Induced Conditioned Gaping Reactions in Rats Produced by High-Dose Synthetic Cannabinoid, JWH-018

8Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Introduction: Cannabinoid hyperemesis syndrome is becoming a more prominently reported side effect of cannabis containing high-dose Δ9-tetrahydrocannabinol (THC) and designer cannabinoid drugs such as "Spice."One active ingredient that has been found in "Spice"is 1-pentyl-3-(1-naphthoyl)indole (JWH-018), a synthetic full agonist of the cannabinoid 1 (CB1) receptor. In this study, we evaluated the potential of different doses of JWH-018 to produce conditioned gaping in rats, an index of nausea. Materials and Methods: Rats received 3 daily conditioning trials in which saccharin was paired with JWH-018 (0.0, 0.1, 1, and 3 mg/kg, intraperitoneal [i.p.]). Then the potential of pretreatment with the CB1 antagonist, rimonabant (SR), to prevent JWH-018-induced conditioned gaping was determined. To begin to understand the potential mechanism underlying JWH-018-induced nausea, serum collected from trunk blood was subjected to a corticosterone (CORT) analysis in rats receiving three daily injections with vehicle (VEH) or JWH-018 (3 mg/kg). Results: At doses of 1 and 3 mg/kg (i.p.), JWH-018 produced nausea-like conditioned gaping reactions. The conditioned gaping produced by 3 mg/kg JWH-018 was reversed by pretreatment with rimonabant, which did not modify gaping on its own. Treatment with JWH-018 elevated serum CORT levels compared to vehicle-treated rats. Conclusions: As we have previously reported with high-dose THC, JWH-018 produced conditioned gaping in rats, reflective of a nausea effect mediated by its action on CB1 receptors and accompanied by elevated CORT, reflective of hypothalamic-pituitary-adrenal (HPA) activation.

Cite

CITATION STYLE

APA

Devuono, M. V., Hrelja, K. M., Petrie, G. N., Limebeer, C. L., Rock, E. M., Hill, M. N., & Parker, L. A. (2020). Nausea-Induced Conditioned Gaping Reactions in Rats Produced by High-Dose Synthetic Cannabinoid, JWH-018. Cannabis and Cannabinoid Research, 5(4), 298–304. https://doi.org/10.1089/can.2019.0103

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free