Simultaneous Inhibition of Glycolysis and Oxidative Phosphorylation Triggers a Multi-Fold Increase in Secretion of Exosomes: Possible Role of 2′3′-cAMP

47Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Exosome secretion by cells is a complex, poorly understood process. Studies of exosomes would be facilitated by a method for increasing their production and release. Here, we present a method for stimulating the secretion of exosomes. Cultured cells were treated or not with sodium iodoacetate (IAA; glycolysis inhibitor) plus 2,4-dinitrophenol (DNP; oxidative phosphorylation inhibitor). Exosomes were isolated by size-exclusion chromatography and their morphology, size, concentration, cargo components and functional activity were compared. IAA/DNP treatment (up to 10 µM each) was non-toxic and resulted in a 3 to 16-fold increase in exosome secretion. Exosomes from IAA/DNP-treated or untreated cells had similar biological properties and functional effects on endothelial cells (SVEC4-10). IAA/DNP increased exosome secretion from mouse organ cultures, and in vivo injections enhanced the levels of circulating exosomes. IAA/DNP decreased ATP levels (p < 0.05) in cells. A cell membrane-permeable form of 2′,3′-cAMP and 3′-AMP mimicked the potentiating effects of IAA/DNP on exosome secretion. In cells lacking 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase; an enzyme that metabolizes 2′,3′-cAMP into 2′- and 3′-AMP), effects of IAA/DNP on exosome secretion were enhanced. The IAA/DNP combination is a powerful stimulator of exosome secretion, and these stimulatory effects are, in part, mediated by intracellular 2′,3′-cAMP.

Cite

CITATION STYLE

APA

Ludwig, N., Yerneni, S. S., Menshikova, E. V., Gillespie, D. G., Jackson, E. K., & Whiteside, T. L. (2020). Simultaneous Inhibition of Glycolysis and Oxidative Phosphorylation Triggers a Multi-Fold Increase in Secretion of Exosomes: Possible Role of 2′3′-cAMP. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-63658-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free