Abstract
Aim: To investigate how osseointegration is affected by different nano-and microstructures. The hypothesis was that the surface structure created by dual acid treatment (AT-1), applied on a reduced topography, might achieve equivalent biomechanicalperformance as a rougher surface treated with hydrofluoric acid (HF). Materials and methods: In a preclinical rabbit study, three groups (I, II, and III) comprised of test and control implants were inserted in 30 rabbits. The microstructures of the test implants were either produced by blasting with coarse (I) or fine (II) titanium particles or remained turned (III). All test implants were thereafter treated with AT-1 resulting in three different test surfaces. The microstructure of the control implants was produced by blasting with coarse titanium particles thereafter treated with HF. The surface topography was characterized by interferometry. Biomechanical (removal torque) and histomorphometric (bone-implant contact; bone area) performances were measured after 4 or 12 weeks of healing. Results: Removal torque measurement demonstrated that test implants in group I had an enhanced biomechanical performance compared to that of the control despite similar surface roughness value (Sa). At 4 weeks of healing, group II test implants showed equivalent biomechanical performance to that of the control, despite a decreased Sa value. Group III test implants showed decreased biomechanical performance to that of the control. Conclusions: The results of the present study suggest that nano-and microstructure alteration by AT-1 on a blasted implant might enhance the initial biomechanical performance, while for longer healing time, the surface interlocking capacity seems to be more important.
Author supplied keywords
Cite
CITATION STYLE
Halldin, A., Jimbo, R., Johansson, C. B., Gretzer, C., & Jacobsson, M. (2016). Improved osseointegration and interlocking capacity with dual acidtreated implants: A rabbit study. Clinical Oral Implants Research, 27(1), 22–30. https://doi.org/10.1111/clr.12507
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.