Epstein−Barr virus (EBV) induces histone modifications to regulate signaling pathways involved in EBV-driven tumorigenesis. To date, the regulatory mechanisms involved are poorly understood. In this study, we show that EBV infection of epithelial cells is associated with aberrant histone modification; specifically, aberrant histone bivalent switches by reducing the transcriptional activation histone mark (H3K4me3) and enhancing the suppressive mark (H3K27me3) at the promoter regions of a panel of DNA damage repair members in immortalized nasopharyngeal epithelial (NPE) cells. Sixteen DNA damage repair family members in base excision repair (BER), homologous recombination, nonhomologous end-joining, and mismatch repair (MMR) pathways showed aberrant histone bivalent switches. Among this panel of DNA repair members, MLH1, involved in MMR, was significantly down-regulated in EBV-infected NPE cells through aberrant histone bivalent switches in a promoter hypermethylation-independent manner. Functionally, expression of MLH1 correlated closely with cisplatin sensitivity both in vitro and in vivo. Moreover, seven BER members with aberrant histone bivalent switches in the EBV-positive NPE cell lines were significantly enriched in pathway analysis in a promoter hypermethylation-independent manner. This observation is further validated by their down-regulation in EBV-infected NPE cells. The in vitro comet and apurinic/apyrimidinic site assays further confirmed that EBV-infected NPE cells showed reduced DNA damage repair responsiveness. These findings suggest the importance of EBV-associated aberrant histone bivalent switch in host cells in subsequent suppression of DNA damage repair genes in a methylation-independent manner.
CITATION STYLE
Leong, M. M. L., Cheung, A. K. L., Dai, W., Tsao, S. W., Tsang, C. M., Dawson, C. W., … Lung, M. L. (2019). EBV infection is associated with histone bivalent switch modifications in squamous epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 116(28), 14144–14153. https://doi.org/10.1073/pnas.1821752116
Mendeley helps you to discover research relevant for your work.