Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel

163Citations
Citations of this article
224Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Here, we have developed a 3D bioprinted microchanneled gelatin hydrogel that promotes human mesenchymal stem cell (hMSC) myocardial commitment and supports native cardiomyocytes (CMs) contractile functionality. Firstly, we studied the effect of bioprinted microchanneled hydrogel on the alignment, elongation, and differentiation of hMSC. Notably, the cells displayed well defined F-actin anisotropy and elongated morphology on the microchanneled hydrogel, hence showing the effects of topographical control over cell behavior. Furthermore, the aligned stem cells showed myocardial lineage commitment, as detected using mature cardiac markers. The fluorescence-activated cell sorting analysis also confirmed a significant increase in the commitment towards myocardial tissue lineage. Moreover, seeded CMs were found to be more aligned and demonstrated synchronized beating on microchanneled hydrogel as compared to the unpatterned hydrogel. Overall, our study proved that microchanneled hydrogel scaffold produced by 3D bioprinting induces myocardial differentiation of stem cells as well as supports CMs growth and contractility. Applications of this approach may be beneficial for generating in vitro cardiac model systems to physiological and cardiotoxicity studies as well as in vivo generating custom designed cell impregnated constructs for tissue engineering and regenerative medicine applications.

Cite

CITATION STYLE

APA

Tijore, A., Irvine, S. A., Sarig, U., Mhaisalkar, P., Baisane, V., & Venkatraman, S. (2018). Contact guidance for cardiac tissue engineering using 3D bioprinted gelatin patterned hydrogel. Biofabrication, 10(2). https://doi.org/10.1088/1758-5090/aaa15d

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free