Can a sinking metallic diapir generate a dynamo?

5Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Metallic diapirs may have strongly contributed to core formations during the first million years of planetary evolutions. The aim of this study is to determine whether the dynamics induced by the diapir sinking can drive a dynamo and to characterize the required conditions on the size of the diapir, the mantle viscosity and the planetary latitude at which the diapir sinks. We impose a classical Hadamard flow solution for the motion at the interface between a spherical sinking diapir and a viscous mantle on dynamical simulations that account for rotational and inertial effects in order to model the flow within the diapir. The flows are confined to a velocity layer with a thickness that decreases with increasing rotation rate. These 3D flows are is then used as input for kinematic dynamo simulations to determine the critical magnetic Reynolds number for dynamo onset. Our results demonstrate that the flow pattern inside a diapir sinking into a rotating planet can generate a magnetic field. Large diapirs (R>10km) sinking in a mantle with a viscosity ranging from 109 to 1014Pa.s provide plausible conditions for a dynamo. Equatorial sinking diapirs are confined to a thicker velocity layer and are thus possibly more favorable for dynamo generation than polar sinking diapirs. In addition equatorial sinking diapirs produce stronger saturated magnetic fields. However, for the range of parameters studied here, estimation of the intensity of diapir-driven magnetic fields suggests that they could not have contributed to the lunar or Martian crustal paleomagnetic fields. © 2012. American Geophysical Union. All Rights Reserved.

Cite

CITATION STYLE

APA

Monteux, J., Schaeffer, N., Amit, H., & Cardin, P. (2012). Can a sinking metallic diapir generate a dynamo? Journal of Geophysical Research: Planets, 117(10). https://doi.org/10.1029/2012JE004075

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free