Enhanced Thermal Stability and Electrochemical Performance of Polyacrylonitrile/Cellulose Acetate-Electrospun Fiber Membrane by Boehmite Nanoparticles: Application to High-Performance Lithium-Ion Batteries

17Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this study, polyacrylonitrile/cellulose acetate (PAN/CA) composite nanofiber membranes with different boehmite contents are prepared by electrospinning. The physical and electrochemical properties of the composite nanofiber membrane as a separator in lithium batteries are investigated. In contrast to commercial polypropylene membrane (PP), the nanocomposite fiber membrane has a 3D network structure, higher porosity, higher thermal stability, higher electrolyte absorptivity, higher ionic conductivity, and better cycling performance. The PAN/CA composite membrane with 12 wt% boehmite has the highest ionic conductivity (1.694 mS cm−1); the specific discharge capacity is 160 mAh g−1 at 0.2 C discharge density and the highest capacity retention rate is 99.3% after 100 cycles. The cycle rate at 2 C has a higher capacity retention rate (88.75%). These results indicate that the PAN/CA/AlOOH composite nanofiber membrane can be expected to replace the commercial polyolefin membrane and behave as a high-performance separator for lithium-ion batteries.

Cite

CITATION STYLE

APA

Yang, N., Liang, Y., & Jia, S. (2021). Enhanced Thermal Stability and Electrochemical Performance of Polyacrylonitrile/Cellulose Acetate-Electrospun Fiber Membrane by Boehmite Nanoparticles: Application to High-Performance Lithium-Ion Batteries. Macromolecular Materials and Engineering, 306(10). https://doi.org/10.1002/mame.202100300

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free