Austenitic Fe-base alloys, SS 316H and Alloy 800HT, were diffusion bonded for use in compact-type heat exchangers in supercritical-carbon dioxide (S-CO2) Brayton cycles. For diffusion bonded 316H, grain boundary migration across the bond-line was observed despite the formation of some Cr-rich carbide, and its tensile properties were similar to those of as-received 316H. However, diffusion bonded Alloy 800HT exhibited severely degraded elongation compared to as-received 800HT due to the formation of continuous Ti-rich carbides along the bond-line. Post-bond heat treatment (PBHT) was found to improve elongation at fracture for diffusion bonded alloys. However, a subsequent corrosion test in S-CO2 at 600 °C (20 MPa) for 1000 h resulted in a loss of elongation. This was much more severe for PBHT-ed 800HT due to the formation of Cr-rich carbides at the bond-line. Meanwhile, it was found that the effect of ageing on loss of elongation during high temperature exposure was greater than that of S-CO2 environment.
CITATION STYLE
Kim, S. H., Cha, J. H., Jang, C., & Sah, I. (2020). Microstructure and tensile properties of diffusion bonded austenitic fe-base alloys—before and after exposure to high temperature supercritical-co2. Metals, 10(4). https://doi.org/10.3390/met10040480
Mendeley helps you to discover research relevant for your work.