Synergetic Effect of Brønsted/Lewis Acid Sites and Water on the Catalytic Dehydration of Glucose to 5-Hydroxymethylfurfural by Heteropolyacid-Based Ionic Hybrids

28Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The effective dehydration of glucose to 5-hydroxymethylfurfural (HMF) has attracted increasing attention. Herein, a series of sulfonic-acid-functionalized ionic liquid (IL)–heteropolyacid (HPA) hybrid catalysts are proposed for the conversion of glucose to HMF. A maximum total yield of HMF and levoglucosan (LGA; ≈71 %) was achieved in the presence of pyrazine IL-HPA hybrid catalyst [PzS]H2PW in THF/H2O–NaCl (v/v 5:1). The mechanism of glucose dehydration was studied by tailoring the Brønsted/Lewis acid sites of the hybrid catalysts and altering the solvent composition. It was found that water and heteropolyanions have a significant effect on the reaction kinetics. Heteropolyanions are able to stabilize the intermediates and promote the direct dehydration of glucose and intermediate LGA to HMF. A small amount of water could facilitate the conversion of glucose to LGA and suppress the dehydration of LGA to levoglucosenone. In addition, the synergetic effect of Brønsted/Lewis acid sites and a little water was conducive to accelerated proton transfer, which improved the yield of HMF from glucose dehydration.

Cite

CITATION STYLE

APA

Zhao, P., Cui, H., Zhang, Y., Zhang, Y., Wang, Y., Zhang, Y., … Yi, W. (2018). Synergetic Effect of Brønsted/Lewis Acid Sites and Water on the Catalytic Dehydration of Glucose to 5-Hydroxymethylfurfural by Heteropolyacid-Based Ionic Hybrids. ChemistryOpen, 7(10), 824–832. https://doi.org/10.1002/open.201800138

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free