Abstract
Background: Pigment epithelium-derived factor (PEDF) is an endogenous glycoprotein with a potential role as a therapeutic for osteosarcoma. Animal studies have demonstrated the biological effects of PEDF on osteosarcoma; however, these results are difficult to extrapolate for human use due to the chosen study design and drug delivery methods. Methods: In this study we have attempted to replicate the human presentation and treatment of osteosarcoma using a murine orthotopic model of osteosarcoma. The effects of PEDF on osteosarcoma cell lines were evaluated in vitro prior to animal experimentation. Orthotopic tumours were induced by intra-tibial injection of SaOS-2 osteosarcoma cells. Treatment with PEDF was delayed until after the macroscopic appearance of primary tumours. Pigment epithelium-derived factor was administered systemically via an implanted intraperitoneal micro-osmotic pump. Results: In vitro, PEDF inhibited proliferation, induced apoptosis and inhibited cell cycling of osteosarcoma cells. Pigment epithelium-derived factor promoted adhesion to Collagen I and inhibited invasion through Collagen I. In vivo, treatment with PEDF caused a reduction in both primary tumour volume and burden of pulmonary metastases. Systemic administration of PEDF did not cause toxic effects on normal tissues. Conclusion: Systemically delivered PEDF is effective in suppressing the size of primary and secondary tumours in an orthotopic murine model of osteosarcoma. © 2011 Cancer Research UK All rights reserved.
Author supplied keywords
Cite
CITATION STYLE
Broadhead, M. L., Dass, C. R., & Choong, P. F. M. (2011). Systemically administered PEDF against primary and secondary tumours in a clinically relevant osteosarcoma model. British Journal of Cancer, 105(10), 1503–1511. https://doi.org/10.1038/bjc.2011.410
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.