As transportation becomes more convenient and efficient, users move faster and faster. When a user leaves the service range of the original edge server, the original edge server needs to migrate the tasks offloaded by the user to other edge servers. An effective task migration strategy needs to fully consider the location of users, the load status of edge servers, and energy consumption, which make designing an effective task migration strategy a challenge. In this paper, we innovatively proposed a mobile edge computing (MEC) system architecture consisting of multiple smart mobile devices (SMDs), multiple unmanned aerial vehicle (UAV), and a base station (BS). Moreover, we establish the model of the Markov decision process with unknown rewards (MDPUR) based on the traditional Markov decision process (MDP), which comprehensively considers the three aspects of the migration distance, the residual energy status of the UAVs, and the load status of the UAVs. Based on the MDPUR model, we propose a advantage-based value iteration (ABVI) algorithm to obtain the effective task migration strategy, which can help the UAV group to achieve load balancing and reduce the total energy consumption of the UAV group under the premise of ensuring user service quality. Finally, the results of simulation experiments show that the ABVI algorithm is effective. In particular, the ABVI algorithm has better performance than the traditional value iterative algorithm. And in a dynamic environment, the ABVI algorithm is also very robust.
CITATION STYLE
Ouyang, W., Chen, Z., Wu, J., Yu, G., & Zhang, H. (2021). Dynamic task migration combining energy efficiency and load balancing optimization in three-tier UAV-enabled mobile edge computing system. Electronics (Switzerland), 10(2), 1–30. https://doi.org/10.3390/electronics10020190
Mendeley helps you to discover research relevant for your work.