Evolution of the general protein import pathway of plastids

109Citations
Citations of this article
67Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The evolutionary process that transformed a cyanobacterial endosymbiont into contemporary plastids involved not only inheritance but also invention. Because Gram-negative bacteria lack a system for polypeptide import, the envelope translocon complex of the general protein import pathway was the most important invention of organelle evolution resulting in a pathway to import back into plastids those nuclear-encoded proteins supplemented with a transit peptide. Genome information of cyanobacteria, phylogenetically diverse plastids, and the nuclei of the first red alga, a diatom, and Arabidopsis thaliana allows us to trace back the evolutionary origin of the twelve currently known translocon components and to partly deduce their assembly sequence. Development of the envelope translocon was initiated by recruitment of a cyanobacterial homolog of the protein-import channel Toc75, which belongs to a ubiquitous and essential family of Omp85/D15 outer membrane proteins of Gram-negative bacteria that mediate biogenesis of β-barrel proteins. Likewise, three other translocon subunits (Tic20, Tic22, and Tic55) and several stromal chaperones have been inherited from the ancestral cyanobacterium and modified to take over the novel function of precursor import. Most of the remaining subunits seem to be of eukaryotic origin, recruited from pre-existing nuclear genes. The next subunits that joined the evolving protein import complex likely were Toc34 and Tic110, as indicated by the presence of homologous genes in the red alga Cyanidioschyzon merolae, followed by the stromal processing peptidase, members of the Toc159 receptor family, Toc64, Tic40, and finally some regulatory redox components (Tic62, Tic32), all of which were probably required to increase specificity and efficiency of precursor import. © 2005 Taylor & Francis.

Cite

CITATION STYLE

APA

Reumann, S., Inoue, K., & Keegstra, K. (2005). Evolution of the general protein import pathway of plastids. Molecular Membrane Biology. Taylor and Francis Ltd. https://doi.org/10.1080/09687860500041916

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free