With the development of remote sensing technology, the semantic segmentation and recognition of various things in the ocean have become more and more frequent. Due to the wide variety of marine things and the large differences in morphology, it has brought greater difficulties to the recognition of marine remote sensing images. In order to obtain better segmentation results of ocean remote sensing images, this paper proposes an cross attention mechanism(Horizontal and Vertical) of exponential operation combined with multi-scale convolution algorithm. Among them, the cross attention mechanism and expanded distribution weight coefficient mentioned in this paper are first proposed. First, Input the marine remote sensing image features into an cross attention mechanism algorithm of exponential operation to obtain feature weight coefficients and joint weight coefficients in multiple directions; Then, the features with weight coefficients are input into the multi-access convolutional layer and the multi-scale dilated convolutional layer respectively for deep feature mining; Then the above steps are repeated twice, and finally the semantic segmentation of marine remote sensing images is achieved by fusing multiple deep-level features afterwards. Experiments were conducted on three public marine remote sensing data sets, and the results proved the effectiveness of our proposed cross attention mechanism of extended operation algorithm. The F values of the MAMC model on Beach, Island and Sea ice data sets have reached 99.4%, 91.25%, 87.08% respectively. Compared with other models, the effect is significantly improved, and proved the powerful performance of the algorithm in the semantic segmentation of marine remote sensing images.
CITATION STYLE
Gao, H., Cao, L., Yu, D., Xiong, X., & Cao, M. (2020). Semantic Segmentation of Marine Remote Sensing Based on a Cross Direction Attention Mechanism. IEEE Access, 8, 142483–142494. https://doi.org/10.1109/ACCESS.2020.3013898
Mendeley helps you to discover research relevant for your work.