This article outlines a Bayesian methodology to estimate and test the Kendall rank correlation coefficient τ. The nonparametric nature of rank data implies the absence of a generative model and the lack of an explicit likelihood function. These challenges can be overcome by modeling test statistics rather than data. We also introduce a method for obtaining a default prior distribution. The combined result is an inferential methodology that yields a posterior distribution for Kendall’s τ.
CITATION STYLE
van Doorn, J., Ly, A., Marsman, M., & Wagenmakers, E. J. (2018). Bayesian Inference for Kendall’s Rank Correlation Coefficient. American Statistician, 72(4), 303–308. https://doi.org/10.1080/00031305.2016.1264998
Mendeley helps you to discover research relevant for your work.