A semi-crystalline iron-based metal-organic framework (MOF), in particular Fe-BTC, that contained 20 wt.% Fe, was sustainably synthesized at room temperature and extensively characterized. Fe-BTC nanopowders could be used as an efficient heterogeneous catalyst for the synthesis of dihydroxybenzenes (DHBZ), from phenol with hydrogen peroxide (H2O2), as oxidant under organic solvent-free conditions. The influence of the reaction temperature, H2O2 concentration and catalyst dose were studied in the hydroxylation performance of phenol and MOF stability. Fe-BTC was active and stable (with negligible Fe leaching) at room conditions. By using intermittent dosing of H2O2, the catalytic performance resulted in a high DHBZ selectivity (65%) and yield (35%), higher than those obtained for other Fe-based MOFs that typically require reaction temperatures above 70◦C. The long-term experiments in a fixed-bed flow reactor demonstrated good Fe-BTC durability at the above conditions.
CITATION STYLE
Salazar-Aguilar, A. D., Vega, G., Casas, J. A., Vega-Díaz, S. M., Tristan, F., Meneses-Rodríguez, D., … Quintanilla, A. (2020). Direct hydroxylation of phenol to dihydroxybenzenes by H2O2 and fe-based metal-organic framework catalyst at room temperature. Catalysts, 10(2). https://doi.org/10.3390/catal10020172
Mendeley helps you to discover research relevant for your work.