Hand Gesture Recognition for Sign Language Using 3DCNN

177Citations
Citations of this article
219Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, automatic hand gesture recognition has gained increasing importance for two principal reasons: the growth of the deaf and hearing-impaired population, and the development of vision-based applications and touchless control on ubiquitous devices. As hand gesture recognition is at the core of sign language analysis a robust hand gesture recognition system should consider both spatial and temporal features. Unfortunately, finding discriminative spatiotemporal descriptors for a hand gesture sequence is not a trivial task. In this study, we proposed an efficient deep convolutional neural networks approach for hand gesture recognition. The proposed approach employed transfer learning to beat the scarcity of a large labeled hand gesture dataset. We evaluated it using three gesture datasets from color videos: 40, 23, and 10 classes were used from these datasets. The approach obtained recognition rates of 98.12%, 100%, and 76.67% on the three datasets, respectively for the signer-dependent mode. For the signer-independent mode, it obtained recognition rates of 84.38%, 34.9%, and 70% on the three datasets, respectively.

Cite

CITATION STYLE

APA

Al-Hammadi, M., Muhammad, G., Abdul, W., Alsulaiman, M., Bencherif, M. A., & Mekhtiche, M. A. (2020). Hand Gesture Recognition for Sign Language Using 3DCNN. IEEE Access, 8, 79491–79509. https://doi.org/10.1109/ACCESS.2020.2990434

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free