Evolutionary computing based neuron -computational model for microstrip patch antenna design optimization

3Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, a novel Evolutionary Computing named Adaptive Genetic Algorithm (AGA) based ANN model is developed for rectangular MPA (Microstrip patch antenna). Considering at-hand and Nextgeneration Ultra wideband application demands, the emphasis has been made on retaining optimal low-cost design with desired cut-off frequency. The proposed method employs multiple sets of theoretically-driven training instances or patch antenna design parameters which have been processed for normalization and sub-sampling to achieve a justifiable and reliable sample size for further design parameter prediction. Procedurally, the input design parameters were processed for normalization followed by sub-sampling to give rise to a sufficient set of inputs to perform knowledge-driven (design-parameter) prediction. Considering limitations of the major at-hand machine learning methods which often undergo local minima and convergence while training, we designed a state-of-art new Adaptive Genetic Algorithm based neuro-computing model (AGA-ANN), which helped to predict the set of optimal design parameters for rectangular microstrip patch antenna. The predicted patch antenna length and width values were later used for verification which achieved the expected frequency. The depth analysis revealed that a rectangular patch antenna with width 14.78 mm, length 11.08mm, feed-line 50Ω can achieve the cut-off frequency of 8.273 GHz, which can be of great significance for numerous UWB applications.

Cite

CITATION STYLE

APA

Saxena, R., Kumar, M., & Aslam, S. (2021). Evolutionary computing based neuron -computational model for microstrip patch antenna design optimization. International Journal of Computer Networks and Communications, 13(3), 15–40. https://doi.org/10.5121/ijcnc.2021.13302

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free