Calving of a Large Greenlandic Tidewater Glacier has Complex Links to Meltwater Plumes and Mélange

22Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Calving and solid ice discharge into fjords account for approximately half of the annual net ice loss from the Greenland ice sheet, but these processes are rarely observed. To gain insights into the spatiotemporal nature of calving, we use a terrestrial radar interferometer to derive a 3-week record of 8,026 calving events from Sermeq Kujalleq (Store Glacier, West Greenland), including the transition between a mélange-filled and ice-free fjord. We show that calving rates double across this transition and that the interferometer record is in good agreement with volumetric estimates of calving losses from contemporaneous unmanned aerial vehicle surveys. We report significant variations in calving activity over time, which obfuscate any simple power-law relationship. While there is a statistically significant relationship between surface melt and the number of calving events, no such relationship exists between surface melt and the volume of these events. Similarly, we find a 70% increase in the number of calving events in the presence of visible meltwater plumes but only a 3% increase in calving volumes. While calving losses appear to have no clear single control, we find a bimodal distribution of iceberg sizes due to small blocks breaking off the subaerial part of the glacier front and large capsizing icebergs forming by full-thickness failure. Whereas previous work has hypothesized that tidewater glaciers can be grouped according to whether they calve predominantly by the former or latter mechanism, our observations indicate that calving here inherently comprises both and that the dominant process can change over relatively short periods.

Cite

CITATION STYLE

APA

Cook, S. J., Christoffersen, P., Truffer, M., Chudley, T. R., & Abellán, A. (2021). Calving of a Large Greenlandic Tidewater Glacier has Complex Links to Meltwater Plumes and Mélange. Journal of Geophysical Research: Earth Surface, 126(4). https://doi.org/10.1029/2020JF006051

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free