Predicting lung cancer risk using explainable artificial intelligence

16Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

Abstract

Lung cancer is a lethal disease that claims numerous lives annually, and early detection is essential for improving survival rates. Machine learning has shown promise in predicting lung cancer risk, but the lack of transparency and interpretability in black-box models impedes the understanding of factors that contribute to risk. Explainable artificial intelligence (XAI) can overcome this limitation by providing a clear and understandable approach to machine learning. In this study, we will use a large patient record dataset to train an XAI-based model that considers various patient information, including lifestyle factors, clinical data, and medical history, for predicting lung cancer risk. We will use different XAI techniques, including decision trees, partial dependence plots, and feature importance, to interpret the model’s predictions. These methods will provide healthcare professionals with a transparent and interpretable framework for screening and treatment decisions concerning lung cancer risk.

Cite

CITATION STYLE

APA

Makubhai, S. S., Pathak, G. R., & Chandre, P. R. (2024). Predicting lung cancer risk using explainable artificial intelligence. Bulletin of Electrical Engineering and Informatics, 13(2), 1276–1285. https://doi.org/10.11591/eei.v13i2.6280

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free