Automated detection of regions of interest in cartridge case images using deep learning

3Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper explores a deep-learning approach to evaluate the position of circular delimiters in cartridge case images. These delimiters define two regions of interest (ROI), corresponding to the breech face and the firing pin impressions, and are placed manually or by an image-processing algorithm. This positioning bears a significant impact on the performance of the image-matching algorithms for firearm identification, and an automated evaluation method would be beneficial to any computerized system. Our contribution consists in optimizing and training U-Net segmentation models from digital images of cartridge cases, intending to locate ROIs automatically. For the experiments, we used high-resolution 2D images from 1195 samples of cartridge cases fired by different 9MM firearms. Our results show that the segmentation models, trained on augmented data sets, exhibit a performance of 95.6% IoU (Intersection over Union) and 99.3% DC (Dice Coefficient) with a loss of 0.014 for the breech face images; and a performance of 95.9% IoU and 99.5% DC with a loss of 0.011 for the firing pin images. We observed that the natural shapes of predicted circles reduce the performance of segmentation models compared with perfect circles on ground truth masks suggesting that our method provide a more accurate segmentation of the real ROI shape. In practice, we believe that these results could be useful for firearms identification. In future work, the predictions may be used to evaluate the quality of delimiters on specimens in a database, or they could determine the region of interest on a cartridge case image.

Cite

CITATION STYLE

APA

Le Bouthillier, M. E., Hrynkiw, L., Beauchamp, A., Duong, L., & Ratté, S. (2023). Automated detection of regions of interest in cartridge case images using deep learning. Journal of Forensic Sciences, 68(6), 1958–1971. https://doi.org/10.1111/1556-4029.15319

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free