Dehydropolymerization of H3B·NMeH2Mediated by Cationic Iridium(III) Precatalysts Bearing κ3-iPr-PNRP Pincer Ligands (R = H, Me): An Unexpected Inner-Sphere Mechanism

13Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The dehydropolymerization of H3B·NMeH2to form N-methylpolyaminoborane using neutral and cationic catalysts based on the {Ir(iPr-PNHP)} fragment [iPr-PNHP = κ3-(CH2CH2PiPr2)2NH] is reported. Neutral Ir(iPr-PNHP)H3or Ir(iPr-PNHP)H2Cl precatalysts show no, or poor and unselective, activity respectively at 298 K in 1,2-F2C6H4solution. In contrast, addition of [NMeH3][BArF4] (ArF= 3,5-(CF3)2C6H3) to Ir(iPr-PNHP)H3immediately starts catalysis, suggesting that a cationic catalytic manifold operates. Consistent with this, independently synthesized cationic precatalysts are active (tested between 0.5 and 2.0 mol % loading) producing poly(N-methylaminoborane) with Mn∼40,000 g/mol, D ∼1.5, i.e., dihydrogen/dihydride, [Ir(iPr-PNHP)(H)2(H2)][BArF4]; σ-amine-borane [Ir(iPr-PNHP)(H)2(H3B·NMe3)][BArF4]; and [Ir(iPr-PNHP)(H)2(NMeH2)][BArF4]. Density functional theory (DFT) calculations probe hydride exchange processes in two of these complexes and also show that the barrier to amine-borane dehydrogenation is lower (22.5 kcal/mol) for the cationic system compared with the neutral system (24.3 kcal/mol). The calculations show that the dehydrogenation proceeds via an inner-sphere process without metal-ligand cooperativity, and this is supported experimentally by N-Me substituted [Ir(iPr-PNMeP)(H)2(H3B·NMe3)][BArF4] being an active catalyst. Key to the lower barrier calculated for the cationic system is the outer-sphere coordination of an additional H3B·NMeH2with the N-H group of the ligand. Experimentally, kinetic studies indicate a complex reaction manifold that shows pronounced deceleratory temporal profiles. As supported by speciation and DFT studies, a key observation is that deprotonation of [Ir(iPr-NHP)(H)2(H2)][BArF4], formed upon amine-borane dehydrogenation, by the slow in situ formation of NMeH2(via B-N bond cleavage), results in the formation of essentially inactive Ir(iPr-PNHP)H3, with a coproduct of [NMeH3]+/[H2B(NMeH2)2]+. While reprotonation of Ir(iPr-PNHP)H3results in a return to the cationic cycle, it is proposed, supported by doping experiments, that reprotonation is attenuated by entrainment of the [NMeH3]+/[H2B(NMeH2)2]+/catalyst in insoluble polyaminoborane. The role of [NMeH3]+/[H2B(NMeH2)]+as chain control agents is also noted.

Cite

CITATION STYLE

APA

Brodie, C. N., Sotorrios, L., Boyd, T. M., Macgregor, S. A., & Weller, A. S. (2022). Dehydropolymerization of H3B·NMeH2Mediated by Cationic Iridium(III) Precatalysts Bearing κ3-iPr-PNRP Pincer Ligands (R = H, Me): An Unexpected Inner-Sphere Mechanism. ACS Catalysis, 12(20), 13050–13064. https://doi.org/10.1021/acscatal.2c03778

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free