We discuss collider search strategies of gluinos which are highly degenerate with the lightest neutralino in mass. This scenario is fairly difficult to probe with conventional search strategies at colliders, and thus may provide a hideaway of supersymmetry. Moreover, such a high degeneracy plays an important role in dark matter physics as the relic abundance of the lightest neutralino is significantly reduced via coannihilation. In this paper, we discuss ways of uncovering this scenario with the help of longevity of gluinos; if the mass difference between the lightest neutralino and gluino is ≲ 100 GeV and squarks are heavier than gluino, then the decay length of the gluino tends to be of the order of the detector-size scale. Such gluinos can be explored in the searches of displaced vertices, disappearing tracks, and anomalously large energy deposit by (meta)stable massive charged particles. We find that these searches are complementary to each other, and by combining their results we may probe a wide range of the compressed gluino region in the LHC experiments.
CITATION STYLE
Nagata, N., Otono, H., & Shirai, S. (2017). Cornering compressed gluino at the LHC. Journal of High Energy Physics, 2017(3). https://doi.org/10.1007/JHEP03(2017)025
Mendeley helps you to discover research relevant for your work.