Molecular motor proteins and amyotrophic lateral sclerosis

20Citations
Citations of this article
81Readers
Mendeley users who have this article in their library.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor neurons in the brain, brainstem and spinal cord, which is characterized by motor dysfunction, muscle dystrophy and progressive paralysis. Both inherited and sporadic forms of ALS share common pathological features, however, the initial trigger of neurodegeneration remains unknown. Motor neurons are uniquely targeted by ubiquitously expressed proteins in ALS but the reason for this selectively vulnerability is unclear. However motor neurons have unique characteristics such as very long axons, large cell bodies and high energetic metabolism, therefore placing high demands on cellular transport processes. Defects in cellular trafficking are now widely reported in ALS, including dysfunction to the molecular motors dynein and kinesin. Abnormalities to dynein in particular are linked to ALS, and defects in dynein-mediated axonal transport processes have been reported as one of the earliest pathologies in transgenic SOD1 mice. Furthermore, dynein is very highly expressed in neurons and neurons are particularly sensitive to dynein dysfunction. Hence, unravelling cellular transport processes mediated by molecular motor proteins may help shed light on motor neuron loss in ALS. © 2011 by the authors; licensee MDPI, Basel, Switzerland.

Cite

CITATION STYLE

APA

Soo, K. Y., Farg, M., & Atkin, J. D. (2011, December). Molecular motor proteins and amyotrophic lateral sclerosis. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms12129057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free